Reactions Common to Aldehydes and Ketones

Addtion of HCN:

$$HCN + OH$$
 $CN + OH$
 CN

Reaction with NaHSO₃: Aldehydes and ketones forms bisulphite with NaHSO₃ which is insoluble in *aq* NaHSO₃:

The above reaction can be used for separation of aldehydes and ketones from other organic compound.

Grignard's reagent addition:

Reaction with ammonia and amines:

Z = Alkyl, aryl, OH, NH₂, C₆H₅NH, NHCONH₂,

Reaction with alcohols:

$$R\text{-CHO} \stackrel{R'OH}{\longleftarrow} \begin{bmatrix} R'OH \\ HCl \ gas \\ OH \end{bmatrix} \stackrel{OR'}{\longleftarrow} R\text{-CH} \\ Hemiacetal} \stackrel{OR'}{\longleftarrow} R\text{-CH} + H_2O$$

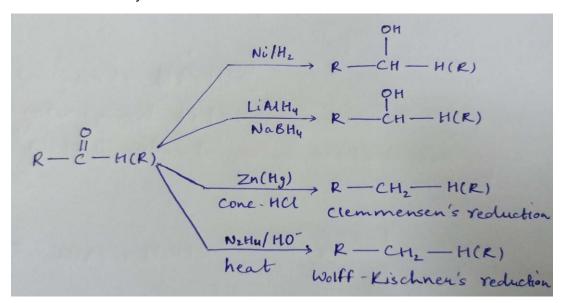

This reaction is used for protection of carbonyl group in a reaction

Table 12.2: Some N-Substituted Derivatives of Aldehydes and Ketones (>C=N-Z)

z	Reagent name	Carbonyl derivative	Product name
-Н	Ammonia	C=NH	Imine
-R	Amine	>C=NR	Substituted imine (Schiff's base)
—ОН	Hydroxylamine	C=N-OH	Oxime
—NH ₂	Hydrazine	C=N-NH ₂	Hydrazone
—HN—	Phenylhydrazine	C=N-NH	Phenylhydrazone
O_2N NO_2	2,4-Dinitrophenyl- hydrazine	\sim	2,4 Dinitrophenyl- hydrazone
O II —NH—C—NH ₂	Semicarbazide	$C=N-NH-C-NH_2$	Semicarbazone

^{* 2,4-}DNP-derivatives are yellow, orange or red solids, useful for characterisation of aldehydes and ketones.

Reduction of Aldehyde of Ketones

